18 research outputs found

    Theories and Methods for the Emergency Rescue System

    Get PDF

    Resveratrol regulates insulin resistance to improve the glycolytic pathway by activating SIRT2 in PCOS granulosa cells

    Get PDF
    ScopeInsulin resistance (IR) has a close relationship with the main clinical manifestations of patients with PCOS; hence, the research and development of new drugs to treat PCOS by improving IR is a desiderate task at present. Resveratrol (RES) possesses a variety of beneficial pharmacological functions, such as antioxidation, anti-inflammatory, regulating glucose, and lipid metabolism. However, whether RES could improve IR and the underlying mechanisms remained unclear in PCOS.Methods and resultsSD rats received a high-fat diet and letrozole for 30 days to establish the PCOS model and then intervened with RES for 30 days. The results demonstrated that RES played a protective role on the IR in PCOS rats, which significantly decreased the levels of blood glucose and serum insulin, up regulated the expression of IGF1R, and down regulated the expression of IGF1. In vitro, KGN cells were treated with insulin, RES, and AGK2, respectively. We found that a high dose of insulin (4μg/mL) significantly inhibited KGN cell viability, decreased the level of lactic acid, and increased the level of pyruvate, while RES (25μM) attenuated the growth-inhibitory effect, as well as increased the level of lactic acid and decreased the level of pyruvate after high levels of insulin treatment. Simultaneously, RES up regulated the expression level of the crucial rate-limiting enzymes relating to glycolytic pathways, such as LDHA, HK2, and PKM2. Furthermore, AGK2 remarkably inhibited the expression level of SIRT2, which was similar to the same negative effects processed by insulin. Meanwhile, RES overtly repaired the glycolysis process by reversing the levels of lactic acid and pyruvate, together with up regulating the expression level of LDHA, HK2, and PKM2, after AGK2 treatment.ConclusionRES could effectively improve insulin resistance and restore the glycolysis pathway by regulating SIRT2, which may contribute to attenuating the ovarian damage of PCOS rats and provide a potential treatment for patients with PCOS

    An Insider Threat Detection Method Based on User Behavior Analysis

    No full text
    Part 10: Image UnderstandingInternational audienceInsider threat has always been an important hidden danger of information system security, and the detection of insider threat is the main concern of information system organizers. Before the anomaly detection, the process of feature extraction often causes a part of information loss, and the detection of insider threats in a single time point often causes false positives. Therefore, this paper proposes a user behavior analysis model, by aggregating user behavior in a period of time, comprehensively characterizing user attributes, and then detecting internal attacks. Firstly, the user behavior characteristics are extracted from the multi-domain features extracted from the audit log, and then the XGBoost algorithm is used to train. The experimental results on a user behavior dataset show that the XGBoost algorithm can be used to identify the insider threats. The value of F-measure is up to 99.96% which is better than SVM and random forest algorithm

    Modeling of a Rotary Adsorber for Continuous Capture of Indoor Carbon Dioxide

    No full text
    Removing indoor CO2 as a pollutant via solid sorbents is a promising solution to maintaining acceptable indoor air quality while minimizing the energy consumption of ventilation. Compared to fixed-bed and fluidized-bed configurations, which require at least two beds to allow for continuous operation, a rotary adsorber is more compact and suitable to be integrated into the ventilation systems of buildings. In the present study, a regenerative rotary adsorber based on temperature swing adsorption was modeled to investigate continuous CO2 capture in an indoor environment. The governing equations of heat and mass transfer processes associated with the capture were established and coded in ANSYS Fluent software. The spatiotemporal variations of CO2 concentration and temperature in gas and solid phases within the rotary adsorber were obtained. The key findings are: (1) adjusting the speed mainly affects circumferential concentration and temperature distribution, but has little impact on axial concentration and temperature; (2) Increasing desorption inlet flow rate has little impact on adsorption outlet concentration, but significantly decreases desorption outlet concentration; (3) Raising desorption inlet temperature can increase both adsorption and desorption outlet average concentrations; (4) Reducing the volume proportion of the desorption sector will slightly increase adsorption outlet concentration and slightly decrease desorption outlet concentration, but barely affects average adsorption and desorption outlet temperatures

    Research on Stator Main Insulation Temperature Field of Air-Cooled Turbo-Generator after Main Insulation Shelling

    No full text
    The stator main insulation is the key component of turbo-generator, which is related to the thermal aging of turbo-generator. It is vital to accurately judge the generator aging by calculating the temperature distribution under main insulation normal operation and fault operation. In this paper, taking a 150 MW air-cooled turbo-generator as an example, the temperature field of the main insulation was studied after the stator main insulation shelling. Based on the finite element method, the stator temperature field after the main insulation shelling was calculated. The main insulation position of maximum temperature drop and the temperature distribution of the stator main insulation along the circumference and the axial direction were analyzed. At the same time, with the shelling gap of main insulation increases, the temperature distribution between shelling gap δ = 0.5 mm and δ = 1.0 mm was compared. The results can provide a theory for fault monitoring and diagnostics of the large-scale turbine generator

    Explore the Benefits of Natural Air: New Insights from Field and Chamber Tests on Cognitive Performance

    No full text
    Exposure to natural environments has a range of health benefits, including enhancing psychological restoration and cognitive development. While there are various explanations on the causes for the benefits of the natural exposure, such as less air pollution and noise, more physical activity, stronger social interactions, or even more diverse microbial community, etc., this study has zeroed in on the air quality of the natural environment. In addition to low-level pollution, what makes the natural air superior remains unclear. To this end, we conducted a series of psychological evaluation and cognitive tests on a couple of subjects in a national forest park in southwest China. Based on the results, we built an artificial chamber where selected air parameters can be independently manipulated and carried out similar tests in the chamber. We came to the following conclusion. (1) Exposure to real natural environment demonstrated tangible benefits for cognitive performances and mental states and the benefits can be obtained to some extent in the artificial environment by creating air qualities similar to the air in the natural environment. (2) Scents in natural environments may be one of the key beneficial factors. (3) Adopting proper cognitive test is critical for distinguishing the differences made by the natural exposure. Working memory showed marked responses to the natural exposure

    Explore the Benefits of Natural Air: New Insights from Field and Chamber Tests on Cognitive Performance

    No full text
    Exposure to natural environments has a range of health benefits, including enhancing psychological restoration and cognitive development. While there are various explanations on the causes for the benefits of the natural exposure, such as less air pollution and noise, more physical activity, stronger social interactions, or even more diverse microbial community, etc., this study has zeroed in on the air quality of the natural environment. In addition to low-level pollution, what makes the natural air superior remains unclear. To this end, we conducted a series of psychological evaluation and cognitive tests on a couple of subjects in a national forest park in southwest China. Based on the results, we built an artificial chamber where selected air parameters can be independently manipulated and carried out similar tests in the chamber. We came to the following conclusion. (1) Exposure to real natural environment demonstrated tangible benefits for cognitive performances and mental states and the benefits can be obtained to some extent in the artificial environment by creating air qualities similar to the air in the natural environment. (2) Scents in natural environments may be one of the key beneficial factors. (3) Adopting proper cognitive test is critical for distinguishing the differences made by the natural exposure. Working memory showed marked responses to the natural exposure

    Present Status, Challenges, and Prospects of Dihydromyricetin in the Battle against Cancer

    No full text
    Dihydromyricetin (DHM) is a natural flavonoid compound extracted from Ampelopsis grossedentata that has been used for centuries in traditional Chinese medicine. DHM has attracted intensive attention due to its numerous beneficial activities, such as hepatoprotection, cardioprotection, antioxidant, and anti-inflammation. In addition, DHM inhibits the progression of cancers such as lung cancer, hepatocellular cancer, breast cancer, melanoma, and malignant reproductive systems through multiple mechanisms, including antiangiogenesis, antiproliferation, apoptosis, and inhibition of invasion and migration. Notably, DHM also activates autophagy at different levels, exerting a dual-regulatory effect on cancers. Mechanistically, DHM can effectively regulate mammalian target of rapamycin (mTOR), noncoding RNA-mediated signaling, phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) pathway, nuclear factor-κB (NF-κB), p53, and endoplasmic reticulum stress (ER stress)-driven signaling in different types of cancers. DHM has also been shown to have inhibitory effects on various regulators that trigger epithelial–mesenchymal transition (EMT). Furthermore, DHM exhibits a remarkable anticancer reversal ability when used in combination with drugs such as adriamycin, nedaplatin, and other drugs. However, the low bioavailability of DHM limits its potential applications, which are improved through structural modification and the exploration of novel dosage forms. Therefore, DHM may become a promising candidate for treating malignancies alone or combined with conventional anticancer strategies used in clinical practice
    corecore